Products of effective topological spaces and a uniformly computable Tychonoff Theorem
نویسندگان
چکیده
This article is a fundamental study in computable analysis. In the framework of Type-2 effectivity, TTE, we investigate computability aspects on finite and infinite products of effective topological spaces. For obtaining uniform results we introduce natural multi-representations of the class of all effective topological spaces, of their points, of their subsets and of their compact subsets. We show that the binary, finite and countable product operations on effective topological spaces are computable. For spaces with nonempty base sets the factors can be retrieved from the products. We study computability of the product operations on points, on arbitrary subsets and on compact subsets. For the case of compact sets the results are uniformly computable versions of Tychonoff’s Theorem (stating that every Cartesian product of compact spaces is compact) for both, the cover multi-representation and the “minimal cover” multi-representation.
منابع مشابه
THE UNIFORM BOUNDEDNESS PRINCIPLE IN FUZZIFYING TOPOLOGICAL LINEAR SPACES
The main purpose of this study is to discuss the uniform boundednessprinciple in fuzzifying topological linear spaces. At first theconcepts of uniformly boundedness principle and fuzzy equicontinuousfamily of linear operators are proposed, then the relations betweenfuzzy equicontinuous and uniformly bounded are studied, and with thehelp of net convergence, the characterization of fuzzyequiconti...
متن کاملOn the maximal G-compactification of products of two G-spaces
Let G be any Hausdorff topological group and let βGX denote the maximal G-compactification of a G-Tychonoff space X (i.e., a Tychonoff G-space possessing a G-compactification). Recall that a completely regular Hausdorff topological space is called pseudocompact if every continuous function f : X →R is bounded. In this paper, we prove that if X and Y are two G-Tychonoff spaces such that the prod...
متن کاملA Tychonoff theorem in intuitionistic fuzzy topological spaces
The purpose of this paper is to prove a Tychonoff theorem in the so-called “intuitionistic fuzzy topological spaces.” After giving the fundamental definitions, such as the definitions of intuitionistic fuzzy set, intuitionistic fuzzy topology, intuitionistic fuzzy topological space, fuzzy continuity, fuzzy compactness, and fuzzy dicompactness, we obtain several preservation properties and some ...
متن کاملCompactness in Countable Tychonoff Products and Choice
We study the relationship between the countable axiom of choice and the Tychonoff product theorem for countable families of topological spaces.
متن کاملExistence of solutions of infinite systems of integral equations in the Frechet spaces
In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logical Methods in Computer Science
دوره 9 شماره
صفحات -
تاریخ انتشار 2013